Features
- Surface Mount FR4 based package
- Reflow Process Compatible
- Low Phase Noise and Jitter
- Tight Stabilities
- Frequency Range 10 - 1200MHz
- Standard Frequencies: 10; 16,384; 30,72; 38,88; 44,8; 52; 61.44; 68.736; 76.8; 77.76; 81.92; 92.16; 100; 112; 122.88; 125; 134.4; 153.6; 155.52; 160; 179.2; 184.32; 195; 208; 245.76; 320; 368.64; 400; 448; 471.8592; 491.52; 622.08; 640; 672; 737.28; 800; 832; 1000; 1040; 1200 MHz
- Previous Model Number: C5310

Applications
- Communication
- Test & Measurement
- Medical
- Military

Performance Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs. operating temperature range (referenced to +25°C)</td>
<td>-15</td>
<td>+15</td>
<td>ppm</td>
<td>-20 to +70°C</td>
<td></td>
</tr>
<tr>
<td>Initial tolerance vs. supply voltage change</td>
<td>-10</td>
<td>+10</td>
<td>ppm</td>
<td>@Vc=Vs/2</td>
<td></td>
</tr>
<tr>
<td>vs. load change</td>
<td>-3</td>
<td>+3</td>
<td>ppm</td>
<td>Vs ±5% Load ±10%</td>
<td></td>
</tr>
<tr>
<td>vs. aging / 1st Year</td>
<td>-2</td>
<td>+2</td>
<td>ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs. aging (following years)</td>
<td>-1</td>
<td>+1</td>
<td>ppm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs. operating temperature range (referenced to +25°C)</td>
<td>-30</td>
<td>+30</td>
<td>ppm</td>
<td>-40 to +85°C</td>
<td></td>
</tr>
<tr>
<td>Initial tolerance vs. supply voltage change</td>
<td>-15</td>
<td>+15</td>
<td>ppm</td>
<td>@Vc=Vs/2</td>
<td></td>
</tr>
<tr>
<td>vs. load change</td>
<td>-3</td>
<td>+3</td>
<td>ppm</td>
<td>Vs ±5% Load ±10%</td>
<td></td>
</tr>
<tr>
<td>vs. aging / 1st Year</td>
<td>-2</td>
<td>+2</td>
<td>ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs. aging (following years)</td>
<td>-1</td>
<td>+1</td>
<td>ppm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Specifications

Supply Voltage (Vs)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
<th>Condition^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (standard)</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>VDC</td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>40 mA</td>
<td>@ HCMOS, Sinewave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage (standard)</td>
<td>4.75</td>
<td>5</td>
<td>5.25</td>
<td>VDC</td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>30 mA</td>
<td>@ HCMOS, Sinewave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>80 mA</td>
<td>@ PECL, LVDS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RF Output

Signal HCMOS
- Load: 15 pF
- Rise and Fall time: 5 ns @ 15 pF 10 to 90%
- Duty cycle: 40 % @ Vs / 2

Signal PECL
- Load: 50 Ω
- Rise and Fall time: 1 ns 20 to 80%
- Duty cycle: 45 %

Signal LVDS
- Load: 100 Ω
- Rise and Fall time: 1 ns 10 to 90%
- Duty cycle: 40 %

Signal Sinewave
- Load: 50 Ω
- Output Power: -3 to 3 dBm

Frequency Tuning (EFC)

Tuning Range
- ±65.0 ppm
- ±90 ppm
- ±200.0 ppm

Linearity
- 10 %

Tuning Slope
- Positive

Control Voltage Range

<table>
<thead>
<tr>
<th>Control Voltage</th>
<th>VDC</th>
<th>VDC</th>
<th>with Vs = 3.3V</th>
<th>with Vs = 5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>1.65</td>
<td>3.3</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Frequency Control Input Impedance
- 100 kΩ

Additional Parameters

Phase Noise

<table>
<thead>
<tr>
<th>Frequency</th>
<th>HCMOS</th>
<th>LVCMOS 3.3V</th>
<th>PECL 3.3V</th>
<th>PEC 3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>dBC/Hz</td>
<td>10 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 Hz</td>
<td>dBC/Hz</td>
<td>100 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 Hz</td>
<td>dBC/Hz</td>
<td>1 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>10 kHz</td>
<td>dBC/Hz</td>
<td>10 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>dBC/Hz</td>
<td>100 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 MHz</td>
<td>dBC/Hz</td>
<td>1 MHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>12 kHz</td>
<td>ps RMS</td>
<td>@ 12kHz .. 20MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jitter

<table>
<thead>
<tr>
<th>Frequency</th>
<th>HCMOS</th>
<th>LVCMOS 3.3V</th>
<th>PECL 3.3V</th>
<th>PEC 3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>ps RMS</td>
<td>10 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 Hz</td>
<td>ps RMS</td>
<td>100 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 Hz</td>
<td>ps RMS</td>
<td>1 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>10 kHz</td>
<td>ps RMS</td>
<td>10 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>ps RMS</td>
<td>100 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 MHz</td>
<td>ps RMS</td>
<td>1 MHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>12 kHz</td>
<td>ps RMS</td>
<td>@ 12kHz .. 20MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>HCMOS</th>
<th>LVCMOS 3.3V</th>
<th>PECL 3.3V</th>
<th>PEC 3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>ps RMS</td>
<td>10 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 Hz</td>
<td>ps RMS</td>
<td>100 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 Hz</td>
<td>ps RMS</td>
<td>1 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>10 kHz</td>
<td>ps RMS</td>
<td>10 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>ps RMS</td>
<td>100 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 MHz</td>
<td>ps RMS</td>
<td>1 MHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>12 kHz</td>
<td>ps RMS</td>
<td>@ 12kHz .. 20MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>HCMOS</th>
<th>LVCMOS 3.3V</th>
<th>PECL 3.3V</th>
<th>PEC 3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>ps RMS</td>
<td>10 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 Hz</td>
<td>ps RMS</td>
<td>100 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 Hz</td>
<td>ps RMS</td>
<td>1 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>10 kHz</td>
<td>ps RMS</td>
<td>10 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>ps RMS</td>
<td>100 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 MHz</td>
<td>ps RMS</td>
<td>1 MHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>12 kHz</td>
<td>ps RMS</td>
<td>@ 12kHz .. 20MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>HCMOS</th>
<th>LVCMOS 3.3V</th>
<th>PECL 3.3V</th>
<th>PEC 3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>ps RMS</td>
<td>10 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 Hz</td>
<td>ps RMS</td>
<td>100 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 Hz</td>
<td>ps RMS</td>
<td>1 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>10 kHz</td>
<td>ps RMS</td>
<td>10 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>ps RMS</td>
<td>100 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 MHz</td>
<td>ps RMS</td>
<td>1 MHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>12 kHz</td>
<td>ps RMS</td>
<td>@ 12kHz .. 20MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>HCMOS</th>
<th>LVCMOS 3.3V</th>
<th>PECL 3.3V</th>
<th>PEC 3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>ps RMS</td>
<td>10 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 Hz</td>
<td>ps RMS</td>
<td>100 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 Hz</td>
<td>ps RMS</td>
<td>1 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>10 kHz</td>
<td>ps RMS</td>
<td>10 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>ps RMS</td>
<td>100 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 MHz</td>
<td>ps RMS</td>
<td>1 MHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>12 kHz</td>
<td>ps RMS</td>
<td>@ 12kHz .. 20MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>HCMOS</th>
<th>LVCMOS 3.3V</th>
<th>PECL 3.3V</th>
<th>PEC 3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>ps RMS</td>
<td>10 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 Hz</td>
<td>ps RMS</td>
<td>100 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 Hz</td>
<td>ps RMS</td>
<td>1 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>10 kHz</td>
<td>ps RMS</td>
<td>10 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>ps RMS</td>
<td>100 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 MHz</td>
<td>ps RMS</td>
<td>1 MHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>12 kHz</td>
<td>ps RMS</td>
<td>@ 12kHz .. 20MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>HCMOS</th>
<th>LVCMOS 3.3V</th>
<th>PECL 3.3V</th>
<th>PEC 3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>ps RMS</td>
<td>10 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 Hz</td>
<td>ps RMS</td>
<td>100 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 Hz</td>
<td>ps RMS</td>
<td>1 Hz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>10 kHz</td>
<td>ps RMS</td>
<td>10 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>ps RMS</td>
<td>100 kHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>1 MHz</td>
<td>ps RMS</td>
<td>1 MHz</td>
<td>1 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>12 kHz</td>
<td>ps RMS</td>
<td>@ 12kHz .. 20MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Specifications

<table>
<thead>
<tr>
<th>Additional Parameters</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subharmonics</td>
<td>-40</td>
<td>dBc</td>
<td>For f > 200 MHz</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>2.0 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing & Packing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Maximum Ratings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage (Vs)</td>
<td>6.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operable Temperature Range</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40</td>
<td>+95</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Typical Phase Noise and Jitter

Phase Noise

VX-501 @ 100 MHz LVCMOS

![Phase Noise](image1)

VX-501 @ 153.6 MHz LVPECL

![Phase Noise](image2)

VX-501 @ 300 MHz LVDS

![Phase Noise](image3)

VX-501 @ 491.52 MHz LVPECL

![Phase Noise](image4)
Package Codes

<table>
<thead>
<tr>
<th>Type</th>
<th>Height “H”</th>
</tr>
</thead>
<tbody>
<tr>
<td>G223B</td>
<td>5.9</td>
</tr>
<tr>
<td>G218B</td>
<td>5.9</td>
</tr>
<tr>
<td>G218E</td>
<td>4.7</td>
</tr>
<tr>
<td>G218C</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Pin Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control Voltage (Vc)</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>RF Output</td>
</tr>
<tr>
<td>4</td>
<td>Supply Voltage Input (Vs)</td>
</tr>
<tr>
<td>5</td>
<td>RF Output complementary (PECL / LVDS) N.C. (CMOS)</td>
</tr>
</tbody>
</table>

Marking

- **VX-501-xxxx**
- **Frequency**: AYYWW

Enable true table (optional)

<table>
<thead>
<tr>
<th>Pin</th>
<th>HCMOS</th>
<th>LVPECL / LVDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>High</td>
<td>Pin 4</td>
</tr>
<tr>
<td>3</td>
<td>Open</td>
<td>N.C.</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>N.C.</td>
</tr>
<tr>
<td>5</td>
<td>High Tristate</td>
<td>N.C.</td>
</tr>
</tbody>
</table>

Enable true table (optional)

- **HCMOS**
 - Pin 2: High Data
 - Pin 3: N.C.
 - Pin 4: No Data
 - Pin 5: No Data

- **LVPECL / LVDS**
 - Pin 2: N.C.
 - Pin 3: Data
 - Pin 4: Compl. Data
 - Pin 5: Compl. Data
Standard Shipping Method

Recommended Reflow Profile

TP: max 250°C (@ solder joint, customer board level)

Tₚ: max: 10…30 sec

Additional Information:

This SMD oscillator has been designed for pick and place reflow soldering

SMD oscillators must be on the top side of the PCB during the reflow process.
Ordering Information

Model Code

VX-501

- **Height**
 - 0: 5.9 mm (G218B)
 - 1: 4.7 mm (G218E)
 - 2: 2.8 mm (G218C)
 - 3: 5.9 mm (G223B)

- **Supply Voltage**
 - D: 5V
 - E: 3.3V

- **RF Output Code**
 - A: HCMOS
 - C: PECL
 - D: LVDS
 - E: Sinewave

- **Temperature Range**
 - E: -40°C to +85°C
 - J: -20°C to +70°C

- **Enable**
 - 0: No Enable
 - 1: Enable

- **Stability Code**
 - 305: ±30ppm
 - 155: ±15ppm (only -20...70°C)

Notes:

1. Contact factory for improved stabilities or additional product options. Not all options and codes are available at all frequencies.
2. Unless otherwise stated, all values are valid after warm-up time and refer to typical conditions for supply voltage, frequency control voltage, load, temperature (25°C).
3. Phase noise degrades with increasing output frequency.
4. Subject to technical modification.
5. Contact factory for availability.

Contact Information

USA:

100 Watts Street
Mt Holly Springs, PA 17065
Tel: 1.717.486.3411
Fax: 1.717.486.5920

Europe:

Landstrasse
74924 Neckarbischofsheim
Germany
Tel: +49 (0) 7268.801.0
Fax: +49 (0) 7268.801.281

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets your specifications. Microchip makes no representation or warranties of any kind, whether express or implied, written or oral, statutory or otherwise, related to the information including, but not limited to its condition, quality, performance, merchantability or fitness for purpose. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip and Vectron names and logos are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.