Vectron’s VC-827 Crystal Oscillator is a quartz stabilized, differential output oscillator, operating off a 2.5 or 3.3 volt power supply in a hermetically sealed 3.2 x 2.5mm ceramic package.

Features
- Ultra Low Jitter Performance, 3rd OT or Fundamental Crystal Design
- Extended Operating Temperature Range, -40 to 105°C
- 20MHz -220MHz Output Frequencies
- Excellent Power Supply Rejection Ratio
- Enable/Disable
- 3.3 or 2.5V operation
- Extended Operating Temperature Range (-40 to 105°C) Option
- Hermetically Sealed 3.2x2.5mm Ceramic Package
- Product is compliant to RoHS directive and fully compatible with lead free assembly

Applications
- Ethernet, GbE, Synchronous Ethernet
- PCIe
- Fiber Channel
- Enterprise Servers and Storage
- Clock source for ADC’s, DAC’s
- Test and Measurement
- GPON
- Clock source for ADC’s, DAC’s, FPGA’s

Block Diagram

![Block Diagram of VC-827 Crystal Oscillator](image)
Performance Specifications

Table 1. Electrical Performance, LVPECL Option

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage(^1) (Ordering Option)</td>
<td>(V_{DD})</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>Current Consumption, 3.3V</td>
<td>(I_{DD})</td>
<td>69</td>
<td>61</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>2.5V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Frequency (Ordering Option)</td>
<td>(f_N)</td>
<td>20</td>
<td>220</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Stability(^2) (Ordering Option)</td>
<td></td>
<td>±25, ±50 or ±100</td>
<td></td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Logic Levels(^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Logic High</td>
<td>(V_{OH})</td>
<td>(V_{DD}-1.025)</td>
<td>(V_{DD}-0.880)</td>
<td>(V_{DD}-1.620)</td>
<td>V</td>
</tr>
<tr>
<td>Output Logic Low</td>
<td>(V_{OL})</td>
<td>(V_{DD}-1.810)</td>
<td>(V_{DD}-0.880)</td>
<td>(V_{DD}-1.620)</td>
<td>V</td>
</tr>
<tr>
<td>Output Rise and Fall Time(^4)</td>
<td>(t_{R/\ F})</td>
<td>500</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>Load</td>
<td></td>
<td>50 ohms into (V_{DD}-2.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty Cycle(^5)</td>
<td>DC</td>
<td>45</td>
<td>55</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Phase Noise, 3.3V, 156.25MHz(^6)</td>
<td>(\phi_N)</td>
<td>-80</td>
<td>-111</td>
<td>-134</td>
<td>dBc/Hz</td>
</tr>
<tr>
<td>10Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter, 156.25MHz(^6)</td>
<td>(\phi_j)</td>
<td>95</td>
<td>130</td>
<td></td>
<td>fs</td>
</tr>
<tr>
<td>12kHz - 20MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable/Disable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs Enabled(^7)</td>
<td>(V_{OH})</td>
<td>(0.7*V_{DD})</td>
<td>(0.3*V_{DD})</td>
<td>(V_{DD})</td>
<td>(V)</td>
</tr>
<tr>
<td>Outputs Disabled</td>
<td>(V_{OL})</td>
<td>(0.7*V_{DD})</td>
<td>(0.3*V_{DD})</td>
<td>(V_{DD})</td>
<td>(V)</td>
</tr>
<tr>
<td>Disable Time</td>
<td>(t_d)</td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Enable/Disable Leakage Current</td>
<td></td>
<td></td>
<td>±200</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>Start-Up Time</td>
<td>(t_{SU})</td>
<td>10</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Operating Temp. (Ordering Option)</td>
<td>(T_{op})</td>
<td>-10/70 or -40/85 or -40/105</td>
<td></td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

1. The VC-827 power supply pin should be filtered, eg, a 10uf, 0.1uf and 0.01uf capacitor.
2. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR refi ow.
3. Figure 1 defines the test circuit and Figure 2 defines these parameters.
4. Output rise and fall time will be 600ps (max) for -40/105 °C operating temperature range.
5. Duty Cycle is defined as the On/Time Period.
6. Measured using an Agilent E5052 Signal Source Analyzer at 25 °C.
7. Outputs will be Enabled if Enable/Disable is left open.

Figure 1.

Figure 2.
Performance Specifications

Table 2. Electrical Performance, LVDS Option

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage(^1) (Ordering Option)</td>
<td>(V_{DD})</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>Current Consumption, 3.3V 2.5V</td>
<td>(I_{OD})</td>
<td></td>
<td>33</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Frequency (Ordering Option)</td>
<td>(f_n)</td>
<td>20</td>
<td></td>
<td>220</td>
<td>MHz</td>
</tr>
<tr>
<td>Stability(^2) (Ordering Option)</td>
<td></td>
<td>±25, ±50 or ±100</td>
<td></td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Logic Levels(^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Logic High</td>
<td>(V_{OH})</td>
<td>0.9</td>
<td>1.43</td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td>Output Logic Low</td>
<td>(V_{OL})</td>
<td></td>
<td>1.10</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Differential Output Error</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>mV</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td></td>
<td>1.125</td>
<td>1.25</td>
<td>1.375</td>
<td>V</td>
</tr>
<tr>
<td>Offset Voltage Error</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>mV</td>
</tr>
<tr>
<td>Output Rise and Fall Time(^4,5)</td>
<td>(t_r/t_f)</td>
<td>10</td>
<td></td>
<td>500</td>
<td>ps</td>
</tr>
<tr>
<td>Load</td>
<td></td>
<td>100 ohms differential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty Cycle(^6)</td>
<td></td>
<td>DC</td>
<td></td>
<td>45</td>
<td>%</td>
</tr>
<tr>
<td>Phase Noise, 3.3V, 156.25MHz(^6)</td>
<td>(\phi_n)</td>
<td>-77</td>
<td>-107</td>
<td>-134</td>
<td>dBc/Hz</td>
</tr>
<tr>
<td>10Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter, 156.25MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12kHz - 20MHz</td>
<td>(\phi_j)</td>
<td>90</td>
<td>125</td>
<td></td>
<td>fs</td>
</tr>
<tr>
<td>Enable/Disable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs Enabled(^7)</td>
<td>(V_H)</td>
<td>0.7*(V_{DD})</td>
<td></td>
<td>0.3*(V_{DD})</td>
<td>V</td>
</tr>
<tr>
<td>Outputs Disabled</td>
<td>(V_L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disable Time</td>
<td>(t_d)</td>
<td></td>
<td></td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>Enable/Disable Leakage Current</td>
<td>(I_{ED})</td>
<td></td>
<td>±200</td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>Start-Up Time</td>
<td>(t_{SU})</td>
<td></td>
<td></td>
<td>10</td>
<td>ms</td>
</tr>
<tr>
<td>Operating Temp. (Ordering Option)</td>
<td>(T_{OP})</td>
<td>-10/70 or -40/85 or -40/105</td>
<td></td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

1. The VC-827 power supply pin should be filtered, eg, a 10uf, 0.1uf and 0.01uf capacitor.
2. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow.
3. Figure 2 defines these parameters and Figure 3 defines the test circuit.
4. Output rise and fall time will be 600ps (max) for -40/105 °C operating temperature
5. Duty Cycle is defined as the On/Time Period.
6. Measured using an Agilent E5052 Signal Source Analyzer at 25 °C
7. Outputs will be Enabled if Enable/Disable is left open.

![Figure 3.](image-url)
Marking Information
XXXMXX - Frequency (Example: 100M00)
YY - Year of Manufacture
WW - Week of the Year
C - Manufacturing Location
* - Pin 1 Indicator

Dimensions in mm

Table 3. Pinout

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E/D or NC</td>
<td>Enable/Disable or No Connection</td>
</tr>
<tr>
<td>2</td>
<td>E/D or NC</td>
<td>Enable/Disable or No Connection</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Electrical and Lid Ground</td>
</tr>
<tr>
<td>4</td>
<td>f_o</td>
<td>Output Frequency</td>
</tr>
<tr>
<td>5</td>
<td>f_o</td>
<td>Complementary Output Frequency</td>
</tr>
<tr>
<td>6</td>
<td>VDD</td>
<td>Supply Voltage</td>
</tr>
</tbody>
</table>

Table 4. Enable Disable Function (optional on pin 1 or pin 2)

<table>
<thead>
<tr>
<th>E/D Pin</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Clock Output</td>
</tr>
<tr>
<td>Open</td>
<td>Clock Output</td>
</tr>
<tr>
<td>Low</td>
<td>High Impedance</td>
</tr>
</tbody>
</table>

Figure 4. Single Resistor Termination Scheme
Resistor values are typically 140 ohms for 3.3V operation and 84 ohms for 2.5V operation.

Figure 5. Pull-Up Pull Down Termination
Resistor values shown are typical for 3.3 V operation. For 2.5V operation, the resistor to ground is 62 ohms and the resistor to supply is 250 ohms.
The VC-827 incorporates a standard PECL output scheme, which are un-terminated FET drains. There are numerous application notes on terminating and interfacing PECL logic and the two most common methods are a single resistor to ground, Figure 4, or for best 50 ohm matching a pull-up/pull-down scheme as shown in Figure 5 should be used. AC coupling capacitors are optional, depending on the application and the input logic requirements of the next stage.

One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left un-terminated, and if it one of the two outputs is left open it will result in excessive jitter on both. PC board layout must take this and 50 ohm impedance matching into account. Load matching and power supply noise are the main contributors to jitter related problems.

LVDS Application Diagrams

Figure 6. LVDS to LVDS Connection, Internal 100ohm Resistor

Some LVDS structures have an internal 100 ohm resistor on the input and do not need additional components. AC blocking capacitors can be used if the DC levels are incompatible.

Figure 7. LVDS to LVDS Connection

Some input structures may not have an internal 100 ohm resistor on the input and will need an external 100ohm resistor for impedance matching. Also, the input may have an internal DC bias which may not be compatible with LVDS levels, AC blocking capacitors can be used.

One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left un-terminated, and if it one of the two outputs is left open it will result in excessive jitter on both. PC board layout must take this and 50 ohm impedance matching into account. Load matching and power supply noise are the main contributors to jitter related problems.

IR Compliance

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 4. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220°C.

<table>
<thead>
<tr>
<th>Table 5. Reflow Profile</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreHeat Time</td>
<td>ts</td>
<td></td>
<td>200 sec Max</td>
</tr>
<tr>
<td>Ramp Up</td>
<td>R<sub>up</sub></td>
<td>3°C/sec Max</td>
<td></td>
</tr>
<tr>
<td>Time above 217°C</td>
<td>t<sub>L</sub></td>
<td>150 sec Max</td>
<td></td>
</tr>
<tr>
<td>Time to Peak Temperature</td>
<td>t<sub>AMB-P</sub></td>
<td>480 sec Max</td>
<td></td>
</tr>
<tr>
<td>Time at 260°C</td>
<td>t<sub>P</sub></td>
<td>30 sec Max</td>
<td></td>
</tr>
<tr>
<td>Time at 240°C</td>
<td>t<sub>P2</sub></td>
<td>60 sec Max</td>
<td></td>
</tr>
<tr>
<td>Ramp down</td>
<td>R<sub>DN</sub></td>
<td>6°C/sec Max</td>
<td></td>
</tr>
</tbody>
</table>
Environmental Compliance

Table 6. Environmental Compliance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Cycle</td>
<td>MIL-STD-883 Method 1010</td>
</tr>
<tr>
<td>Solderability</td>
<td>MIL-STD-883 Method 2003</td>
</tr>
<tr>
<td>Fine and Gross Leak</td>
<td>MIL-STD-883 Method 1014</td>
</tr>
<tr>
<td>Moisture Sensitivity Level</td>
<td>MSL1</td>
</tr>
<tr>
<td>Contact Pads</td>
<td>Gold (0.3-1.0um) over Nickel</td>
</tr>
<tr>
<td>ThetaJC (bottom of case)</td>
<td>23 °C/W</td>
</tr>
<tr>
<td>Weight</td>
<td>28 mg</td>
</tr>
</tbody>
</table>

Table 7. Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-55 to 125 °C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150 °C</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>-0.5 to 5.0 V</td>
</tr>
<tr>
<td>Enable Disable Voltage</td>
<td>-0.5 to Vdd+0.5 V</td>
</tr>
<tr>
<td>ESD, Human Body Model</td>
<td>1500 V</td>
</tr>
<tr>
<td>ESD, Charged Device Model</td>
<td>1500 V</td>
</tr>
</tbody>
</table>

Table 8. Tape and Reel Information

<table>
<thead>
<tr>
<th>Tape Dimensions (mm)</th>
<th>Reel Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W F Do Po P1 A B C D N W1 W2 #/Reel</td>
<td></td>
</tr>
<tr>
<td>8 3.5 1.5 4 4 178 2 13 21 60 10 14 1000</td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability. Although ESD protection circuitry has been designed into the VC-827, proper precautions should be taken when handling and mounting. Vectron employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.
Ordering Information

Example: VC-827-ECE-KAAN-xxxxMxxxxxx

Freq [MHz]
Other (Future Use)
N: Standard
Enable/Disable Pin
A: Pin 1 (Pin 2 = No Connection)
B: Pin 2 (Pin 1 = No Connection)
Enable/Disable Logic
A: Output is Enabled with a Logic High or open,
 Output is Disabled with a Logic Low
Stability
F: ±25ppm
K: ±50ppm
S: ±100ppm

Product
XO
Package
3.2x2.5mm
Voltage Options
E: +3.3 Vdc ±5%
H: +2.5 Vdc ±5%
Output
C: LVPECL
D: LVDS
Temp Range
W: -10/70°C
E: -40/85°C
F: -40/105°C

Example: VC-827-ECE-KAAN-156M250000

* Add _SNPB for tin lead solder dip
Example: VC-827-ECE-KAAN-156M250000_SNPB

Notes:
a) Only ±100ppm stability option is available for temperature range of -40/105 °C. ±50ppm is available in some cases.
b) Not all combinations of options are available. Other specifications may be available upon request. Consult with factory.
Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Approved</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 07, 2016</td>
<td>RC</td>
<td>Rev 0.0: VC-827 Preliminary datasheet for factory approval (Internal Revision)</td>
</tr>
<tr>
<td>May 31, 2017</td>
<td>VN</td>
<td>Rev 0.1: Internal Revision based on factory information</td>
</tr>
<tr>
<td>June 14, 2017</td>
<td>VN</td>
<td>Rev 0.2: Initial Product Release in Website</td>
</tr>
<tr>
<td>Sept 06, 2018</td>
<td>FB</td>
<td>Update logo and contact info, add thetaJC, add SNPBDIP ordering option</td>
</tr>
<tr>
<td>May 09, 2019</td>
<td>FB</td>
<td>Update logo and contact information, change to SNPB ordering option, increase frequency range to 220MHz</td>
</tr>
</tbody>
</table>

Contact Information

USA:
100 Watts Street
Mt Holly Springs, PA 17065
Tel: 1.717.486.3411
Fax: 1.717.486.5920

Europe:
Landstrasse 74924 Neckarbischofsheim
Germany
Tel: +49 (0) 7268.801.0
Fax: +49 (0) 7268.801.281

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATION OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING, BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly, or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip and Vectron names and logos are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.